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ABSTRACT

The self-steepening, or change in shape, of light pulses
due to propagation in a medium with an intensity-dependent
index of refraction is investigated. The time required for
the pulse to steepen into an optical shock is found, and the
time development of the bulses studied for both zero and finite
times of relaxation of the index of refraction. Analytic and
numerical solutions are given for the pulse development in a
number of cases. The frequency spectrum is obtained in the
zero relaxation time limit and the largest peak intensities
are found on the lower frequency side of the input spectrum.
Although the rate of steepening is modified when the decay time
of the pulse becomes as short as the relaxation time for the
nonlinear part of the index of refraction, the time of decay
can become arbitrarily short when there is no dispersion.
Estimates are given of the thickness of the optical shock region
and of the frequency spreading allowed by dispersion with the
effect of relaxation included. The influence of self-steepening
or pulse distortion in nonlinear optical experiments is dis-

cussed.



I. INTRODUCTION

An intensity-dependent index of refraction1 will distort
an optical pulse along its direction of propagation and can
give rise to optical shocks (pulse self-steepening). If the
index increases due to the nonlinearity (due, for example, to
the Kerr effect) the trailing edge of the pulse steepens until
its intensity falls as rapidly as the dispersion will allow,
this steepening being analogous to the development of an acoustic
shock on the leading edge of a sound wave. Steepening occurs on
the trailing part of the pulse in materials where the velocity
of the peak of the pulse is slower than that of the wings, because
the trailing part of the pulse catches up with the peak.

In the absence of dispersion, a discontinuity is produced
on the trailing edge which travels with a velocity appropriate
for the maximum energy density in the pulse and the pulse tends
asymptotically to a triangular shape. The front of the pulse
travels faster than the rear and the pulse continues to broaden
even after the discontinuity has occurred. As indicated above,
dispersion prevents the development of an infinitely sharp jump
and hence limits the Fourier spectrum of the pulse from spreading
indefinitely.

In the situation where the pulse exhibits a periodic modu-~
lation (due, for example, to the beating of two nearby modes of
the laser) the steepening occurs in each period of the beat and
the pulse eventually appearsii series of sawteeth. The frequency

spectrum spreads and has its most intense components on the lower
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frequency side. Such effects are observed in the spectrum of
the output pulse from liquids such as CS, when two or more
frequency components are initially present in the beam.2 It
should be noted that the asymmetry of the spectrum occurs even
in the limit of zero relaxation time.

Electromagnetic shocks in the microwave frequency region
and at lower frequencies have been discussed.3 In these cases
attention was concentrated on shocks which form on the leading
edge of the pulse, such as may occur in ferrite materials, tran-
sition layers in semiconductors, and in transmission lines. The
formation of electromagnetic shocks in the optical range has been
discussed by Ikuta and Taniuti4 and by Rosen.5 However, these
authors emphasize shocks which occur during an optical period
due to the generation of optical harmonics, as may be seen from
the time of shock formation they give, which is related to the
period of the light wave. Although the response of nonlinearities
in electronic polarization is very rapid (of order of the optical
period); shocks during an optical period cannot be highly developed
in real media because of color dispersion and absorption. Further-
more, the nonlinear polarization responsible for the harmonic
response is usually an order of magnitude smaller than, for example,
that due to molecular orientation. Optical shock formation has
also been considered by Broer,6 including the role of dispersion.
A brief report on optical shocks by Joenk and Landauer7 is rather
closely related to the considerations presented here, and does

apply to the case of molecular orientation.



Assume, now, an optical medium with a nonlinear dielectric
response which is too slow for optical frequencies, but which
decreases the wave velocity with increasing optical intensity.
The characteristic distance for shock formation, assuming a very

short relaxation time and neglecting dispersion, is given approxi-

2

mately by z;l = 3v, (dp/dt) /vg, where p = n_ E2/8n is approxi-

Min
mately the energy density in the wave. The symbol (dp/dt)Min
indicates the largest negative slope of the initial pulse in time,

and ng is the linear refractive index. Further, v., is a constant

2

of the material given by v, = 8ﬂn2vo/n2, where v_ is the linear

2
velocity of propagation, and the index of refraction is given by
n=n_ + n2E2. Note that the period of the electromagnetic wave

does not appear. For a Gaussian pulse, the shock distance is

found to be z = 0.19 noz/én, where § = tzvo, tz being the initial
width of the Gaussian in time, and én is the nonlinear index change
at the peak of the pulse. In a "small-scale trapping" filament in
CS,, Em/no of the order of 10™T can be obtained. For Q-switched

pulses normally available, t, is about 10 nsec, giving z about

)
5 meters. However, for a "mode-locked" laser tg can be less than
lO_ll sec and hence pulse steepening can occur over propagation

path lengths of less than a centimeter. Shocks may also develop
in such short distances when the light intensity is rapidly
modulated due to the mixture of Brillouin or Rayleigh-scattered

waves with laser light.
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In the case of an initially sinusoidal intensity variation,
sidebands shifted by multiples of the modulation frequency are
developed by the shock, with the most intense sidebands shifted
downwards by about 15% at the shock distance. Further down
shifting will occur beyond the shock distance.

In general, the intensity-dependent part of the refractive
index can respond at the sum or difference of nearby optical fre-
quencies in the laser pulse. In liquids, the most prominent non-
linearity which responds to difference frequencies is normally due
to the Kerr effect. A dominant part of the Kerr effect corresponds

to molecular alignment by the optical fields, an alignment which



will respond appreciably to frequency differences Aw in the

range AwT < 1 where 7 is the relaxation time for alignment and

is normally in the range lO—9 - lO-l3 sec. Molecular alignment

is also at least partly responsible for self-trapping,9 self-

focusing,]0 stimulated Rayleigh-wing scattering,ll

12

and light-

by-light scattering.

A further important difference frequency nonlinearity,
which can also produce self-steepening, is intensity-dependent
anomalous dispersion due to saturation of an atomic or molecu-
lar transition. For a normal distribution of population, the
self-steepening due to this process will occur on the leading
edge of the pulse if the light frequency is below the atomic
frequency and on the trailing edge of the pulse if the light
frequency is above the atomic frequency. For an inverted popu-
lation, the leading and trailing edges exchange roles. This
effect is analogous to the induction of self-focusing and self-
defocusingl3 due to intensity-dependent anomalous dispersion,
and can produce steepening in laser pulses. Estimates of the
maximum intensity-dependent index change give variations from

6 3 in the GaAs semi-

2 X 107" in the Xe gas laser to 5 X 10~
conductor laser.
II. THE LIGHT-PULSE EQUATIONS WITHOUT RELAXATION

The light-pulse equation is readily obtained from the
Poynting equation, which for a nonmagnetic material may be

written as

E’-%T—f+¥f--§§+c7~(§xﬁ’)=0 : (1)
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Assuming a linearly-polarized plane wave propagating in the

z-direction, we may write (1) as

E—+ 55—+ c—=20 (2)

where the bar indicates averaging over optical periods. This
averaging is carried out since we consider the case where the
optical frequency components of the energy density do not
contribute to the nonlinearity. In the spatial derivative

term we may replace Eﬁ, using Maxwell's equations, as follows

EH = 8w pc Jo (3)

where p is given by

p=Té? (E_D+H2) (4)

and vp(p) is the phase velocity, which is taken to be a nonlinear
function of p. In writing (3), terms of order of the wave length
over the characteristic pulse distance and the effects of color
dispersion have been neglected. We may also rewrite the time-

derivative term

g oD, 1082 _13(ED+w)  LEDJ _g 3p, 4mpd , (5
ot 2ot 2 ot 2 € ot 3t e ot

where D = ¢E and where € = cz/v;. The light-pulse equation is

then



o (v _p)
§B+£_a_€_+——.—pp = 0 (6)

dt 2 ot oz
or, replacing € by the phase velocity,

ov ov_p
S _p P P,y (7a)
ot  v_ ot oz

In addition to the equation for p we also have the approxi-

mate equation of motion of the phase

od od
— + vV

—_ =0 . (8
ot P 3z )

Assuming that the wave consists of a dominant initial Fourier
component at or near frequency W and propagation vector

k= wo/vo then we may write

o = koz - ot + o) (9)

and we have for ¢

99 o _ i,
et 5, T Folorvp) - (10)

In general, vP is a function of other variables (in
addition to p) such as temperature and pressure. We assume
these do not change in time or space enough to significantly
affect the nonlinear terms of importance. If relaxation is
sufficiently rapid, we can take Yo to be a function of the

instantaneous value of p and equation (7a) may be rewritten
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ov v
[1--&-—P}§B+[v +p——1-°-}§3=0 : ( 7b)
5 dp - ot

Or, introducing the quantity

ov
0=p-f{,9—gﬁ-3dp+00 s (11)
Y
where Oq is independent of p and time, we may write the light-
pulse equation as
o (v
olvpe)

3

0o . (12)
ot oz

If the material system has a high heat capacity and rapid
exchange of energy between its modes, then molecular orien-
tation does not appreciably change its temperature. In this
case, the system is isothermal during passage of the light
pulse and ¢ is the Gibbs free energy. The change in velocity

due to the nonlinearity may be written

2
Vo T Vo T VP + Vet + . . (13)

For most situations of interest vy > 0. If terms in p2 and

higher powers are neglected in (13), and assuming Vop << Vo’l4
we may approximate (7b) by
o(v_p)
ot °©

oz oz
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Here,
_ 3 _ 1
Ve VG T T VP =V, - 3 Vo (15)
Also (10) becomes
ol od _
A (16)

o obeys the same equation as p provided Vop <LK Vg - Equation
(14) may be recognized as the continuity equation for energy
density, with the effective velocity of the energy flow through
a boundary given by Ve

In the frame moving with linear velocity Vo along the z

axis, (14) becomes

<

L2y, L3y, (17)
z

where z is now the coordinate in the moving frame,15 and (16)

becomes

§9-= ko Voo (18)

The solution of (11), the light pulse equation, can be
obtained by the method of characteristics and is given in implicit
form (for the boundary condition of an input signal varying in

time at z = 0) by the set of equations
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P (z,t) = P (O,to)

2 = (vg=3v,0(0,t )} (t-t )

(19)

(20)

Equation (19) indicates that along each characteristic curve

leaving z = 0 at t = too the density p remains constant.

Equation (20) determines the family of characteristic curves,

in this case straight lines. Taken together (19) and (20)

describe the distortion of a pulse.

Another form of the solution of (14) is p[z =~ (vo-3v2p)(t—to)]

where p is an arbitrary function. However, for physical reasons

it must be single valued. It follows from this form, or from

(19) and (20), that the peak intensity of the pulse is constant,

and that the pulse may be constructed at any distance before

formation of a shock by translating in time a given intensity

from its initial time, an amount proportional to the product of

(V0—3v2p)_l and the distance.

There are thus three distinct velocities of importance.

One is the phase velocity of the optical wave,vp =

A second is the effective velocity of energy flow,

v

v

o]

e

Vzp .

v

O

- 3/2 VP

The third is the envelope velocity, or the velocity of a given

field intensity on the envelope of the optical wave, which is

Ven = Vo - 3v2p.

At some distance a discontinuity or shock forms due to the

crossing of two characteristics. This crossing distance is

found from (20) as follows.



13

Z zZ

Lt =t = + t (21)
[V -3v,0(0,t,)] ° v =3v,0(0,t,) ©
that 1is,
1 - 1
1 Vo—3v2p(0,t6) vo-3V2p(O,to) (22)
“ to - % .

The characteristics that cross first must be initially adjacent

so that we can take the limit té —’to to obtain

dp (t )
(,) 0y e
-1 _
Z

[v 3v2p(t )]

(23)

The smallest distance occurs when the right-hand side of (23) is
largest and positive (since the left-hand side of (23) is positive).
This occurs for times greater than the time when the peak passes.
In other words, the steepening occurs on the trailing edge of the

pulse. The steepening distance z is then given by

; dp (t )
1 "2 ae -3v, 4
ZS = [V . (t )]2 =~ <—TV —-&-dt (24)
(o} 2P Yo Max o o | Max

For a Gaussian initial pulse {p(0,t) = Po EXP (—4t2/tz)],

(24) gives the steepening distance
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2
t, v £
1 |e £ "o o
Zs =~ —6r\ 7 V2 po = .194 6—n (25)

where 6n is the nonlinear refractive index change at the pulse
maximum and f = votz.
If the boundary conditions are those of a given variation

in space at an initial time t = 0, the solution of (14) can be

written in the form

plz,t) = plzg,t,) (26)

zZ - 2
O

{vo - 3v2p(0,to)}t . (27)

The characteristics will first cross at a time given by

el o 3y, G0 ~ vzt (28)

s 2 dzolMax O s

To solve the phase equation in order to determine the

Fourier spectrum of the pulse we introduce the coordinates

(Z/vo + t) n = % (Z/vo - t) . (29)

Je
1l
N -

The phase equation (16) becomes

§9_= Oo V2
a¢

pn,t) (30)
(o]

which has the solution, assuming ¢ = 0 at z = O,
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(t + z/vo)
¢ = f d¢ p(n,C) . (31)
% (t - z/vo)

e
<
ol

We then use the characteristic equation (20) written in the

form

i
S,tL) = ‘;“l— | [3vap (EG) = 2voin + [3vyp(ty) - Vo}té} > 32)
V2 p(to)

to change the variable of integration from { to té

w t-z/v ot (n,tr)
¢ = - == f ©atr p(tr) — 2 (33)
vo Jy o o S’
o o

4 /
where t_ = t - z/[vo-3v2p(to)].

Equation (33) may be integrated by parts to give

P AY (t)
b = w, { 2 Pty (l - 1n [p(to)/po] >
vo[vo—3v2p(to)] :

t—Z/Vo 1 t_z/vo
(@)

The last two integrals can be easily carried out for specific

input signals p(to).
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Appendix A gives some further properties of the light-
pulse equation (14).

Figure 1 shows the development of a Gaussian pulse for
the two types of boundary conditions discussed above. Note in
Fig. 1b that the pulse moves backwards in the moving frame
because of the intensity-dependent decrease in velocity.

Figures 2a-e show the evolution in shape and Fourier spec-
trum of a pulse which is initially sinusoidally modulated. This
modulation could arise from the beating of two laser modes or
from sidebands produced by a stimulated scattering process (e.g.
Brillouin or Rayleigh scatteringl6). Bloembergen and Lallemand2
have already discussed the beating of two frequencies together
to produce, through Kerr effects, additional sidebands. Their
perturbation approach is useful for the initial growth of
additional frequency components. The present approach allows
calculation of the fregquency spectral distribution for cases
where the additional components have become arbitrarily intense.

To examine the frequency spectrum of a pulse we take the
time Fourier transform at a given point in space along the
direction of propagation. To obtain the spectrum shown in Figs.
2d and 2e we have used a spatial boundary condition. The spec-

trum is given by

*
S(z,a)o+Aa>) = Z% Re E(z;,oo+Aw) H (Z,a)O+Aa>)
v \ T . . 2
~ ﬁ? \/\ dt {p(z,t)}l/2 el¢(z’t) glowt R (35)
~-T

where Aw is the frequency shift relative to the frequency w,.

For a periodic pulse T is taken to be the modulation period.
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The second line of (35), used to find the spectra in 24 and 2e,
holds in the limit Vo > Vop. This approximation tends to in-
crease the high frequency components relative to the lower fre-
quency components. The quantity S(Z,wo + Aw) 1s the average power
flowing per cm2 per second in the spectral component at frequency
Wy + Np». Using the field equations this quantity can be shown
in the lossless case to obey the generalized Manley-Rowe relations.17
We note that the power spectrum develops one or more strong peaks
on either side of Ww,i as z increases the shifts become more pre-
dominant. The prominent downward shifts come from the leading
part of the pulse while the upward shifts come from the steepened
region in the tail. The upward peaks shift in frequency faster
because of the steepness of the tail. The ratio of peak spectral
intensity on the upper side to the peak spectral intensity on the
lower side becomes progressively smaller with distance. The amount
of upward shifting will decrease when the relaxation time is taken
to be non-zero. The same general features are observed in the
power spectra of other pulses such as the Gaussian. Deviations
in the spectra on the high frequency side occur when the steepness
of the shock becomes comparable to the optical wavelength, because
the approximations used to obtain the light pulse equations break
down .

The downward frequency shift éw, estimated in Appendix B

for the particular case of an N-wave or asymptotic pulse is

z on
75 - (36)
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A similar result has been obtained by Joenk and Landauer.7 Iif

expression (36) is used for the case of sinusoidal modulation,
it predicts a 30 percent shift in frequency at z for the most
prominent peak, which is to be compared with thel5 percent shift
shown in Figs. 2d and 2e. As the pulse develops for distances
larger than z s further downward shifting of the most intense
spectral components will occur.

Even though present considerations are not strictly valid
in the shock range (t > ts) because of the finite relaxation time
T of the nonlinear dielectric response and because of dispersion,
as well as the breakdown assumption that the characteristic pulse
lengths are much greater than the optical wavelength, it is never-
theless valuable to examine the pulse behavior assuming the
relaxation to be infinitely fast to gain insight into the behavior

of solutions, particularly when t, >> 7. After the discontinuity

)
first occurs at tys the conservation equation (14) in differential
form must be replaced by one in integral form. It is possible to

show in the frame moving with velocity Vo that the velocity of

the shock front is given by the Rankine-Hugoniot equation

vg =3 vy [p21/1p) = = 5 v, (o, + ) (37)

where [ ] indicates the jump across the shock front of the
quantity contained inside. Py and p_ are respectively energy
densities immediately in front of and immediately behind the
discontinuity. The negative sign shows that the shock moves
backwards in the moving frame with a speed proportional to the
average of the initial and final energy densities. For the

parts of the pulse not on the discontinuity, the velocity is
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where Vp+ are the velocities of the pulse just in front of and
behind ~ the shock. Equation (38) indicates the tail of the
pulse is catching up with the shock, increasing the discontinuity
with time, and thereby further increasing its backwards velocity
(in the moving frame). This process continues until all or most
of the tail catches up with the pulse discontinuity.

The entire pulse spreads in time because the front of the
pulse travels faster than the shock region. Eventually the shock
discontinuity begins to decrease in height because of this spread-
ing. It can be shown l8that the shape of the pulse tends, for
t - », to a triangle (N-wave) for an initial function which is
zero outside a finite interval. The height of the shock front

1/2 and the width increases as t+l/2,

in the N-wave decreases as t
the total energy being constant. If the energy density is periodic
with period p (the case of a sinusoidal modulated pulse) the
asymptotic solution is a series of sawtooth functions (i.e. a series
of N-waves) with the discontinuity in each period proportional to
p/t.

As the pulse steepens, more and more Fourier components
appear in the pulse, the spread in Fourier components being
given by dAk = 27m,where 4 is the thickness of the shock. If the
medium is diSperzive, the gpread in Ak gives a spread in linear
velocity Av = IE;EIAk ~ ;ﬁ— I%EIAk. This spread in velocities
tends to dissipate the shock front. Equating this spreading
velocity to the nonlinear velocity change which steepens the

pulse, we obtain the following approximate result for the stable

thickness
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o |d_n| _ Yo |dn| (39)
o~ 3v, pn, 'dw 35n 'dy

where 6n is the nonlinear index change. This distance is some-

what analogous to the Taylor thickness in acoustical shocks.l8

The frequency spread, as opposed to the downward shift given by

(36), is
3v,p N
pv, ~ 220 3n (40)
° v, 12l 1S
o 'dw dv
dn -6 . .
In CS,, Ia—| ~ 5x 10 ~ cm and in a small scale trapped fila-

ment, the percentage changes in index range from about 0.1% up to
a few tens of percent. Choosing 6n/no ~ .1, we obtain
Mg = 10° cm-l, and d_ ~ 107> cm, a distance smaller than a
waleength, which is small enough that some of the approximations
used are no longer correct. We must include higher derivative
terms which were dropped in obtaining the energy density and phase
equationsbecause of the assumption that the distance (or time)
over which the pulse changes is large compared to a wavelength
(or period). The actual thickness is considerably increased and
the frequency spread correspondingly reduced by relaxation of the
nonlinear index as will be shown in the next section.
III. THE LIGHT PULSE EQUATIONS WITH RELAXATION

In Section II the pulse steepening equations are derived
assuming an infinitely fast response of the nonlinear polarization.
If the relaxation process is exponential, then the nonlinear index

: . . 19
change 6e (where de = ¢ - eo) can be written, to first order 1in p,
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2 _ v t , ,
__%__3 [ dac p(z,t’) e~ (E-t7) /T } (41)

e (z,t) = -

In differential form, equation (41l) is

2 v,p
dde _ o "2 e . (42)

ot v T T
o

This may also be written as an equation for the phase velocity

odv Vo
= - - - 5V/T (43)
ot T P
where 6v = vp - Vg- In the moving frame (41) becomes
2 v t
o 2 dat’ —(t-t’) /T
o€ (z,t) = VT {m = plz + v [t-tr],tr)e ( )/ (44)

where z is in the moving frame. In differential form we have

obe dde 2€ov2p _%e (45)

—— - =

ot © 3z VT T

Equations (7a) and (8) together with (43) form a set of coupled
equations describing the development of pulse steepening in the
case of the nonzero relaxation time. In the limit when 7 — 0
(7a) and (43) combine to give (15).

If we solve equation (43) for p and insert it into thevsecond
term on the left of (7a) and approximate Yo by Vo in the denomi-

nator of this term, the equation becomes
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2
ég_+ T 56{) + a(vpp) _

— 0 46)
At V.V ot dz (
2 0
where
2
ov
c=p + év—%— + 04 (47)
2 0

and Oq is independent of time. The second term in (46)
represents the irreversible part of the work done by the
external sources on the volume element under consideration.
Since this work must be positive unless the medium amplifies
the wave, or there are other overriding losses such as those
due to resistance, v, is normally positive. For an isothermal
system, ¢ is just the Gibbs free energy made up of the energy
stored in the field and dielectric and the remaining free
energy. Furthermore, in the case of the alignment of polari-
zable molecules, v, = K/T, where K is a constant and T the
temperature. It can then be shown that the part of the entropy

density due to alignment is

2
v_(6¢) 2
o (6v)
S = - = — . (48)
8K£oz 2Rv,,

The electromagnetic field does not appear in this result
since the entropy is an intrinsic property of the alignable
molecules. The internal energy density, u, is found to be equal
to p [defined by (4)] either from the relation u = o - Ts or
from integrating EdD + HAH holding entropy (and hence d¢)
constant. In aligning the molecules under isothermal conditions,

heat flows out of the alignment degree of freedom into the
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surroundings. If the relaxation time is nonzero, then part of
this heat flow is irreversible, this part being related to the
ratio of the relaxation time to the time over which the pulse
is changing.

Equations (7a) and (43) still indicate the build up of a
rarefaction shock. For pulse widths which are long compared to
the relaxation time, the pulse builds up a sharp trailing edge
of width TV, in a distance given by (24). Further sharpening
occurs with the thickness decaying to zero (neglecting loss and
dispersion). The finite relaxation time of the nonlinearity does
not intrinsically limit steepening and frequency broadening of
the pulse. After steepening of the trailing edge to a width
somewhat smaller than TV, has occurred, the velocity change §v in
the steep region and the tail should be determined primarily by

the exponential decay of the peak velocity. Therefore

(z-z ) /v T
o
v (z) =-dv e °© » for z < zg (49)
where z, is the leading point or peak of the steep region and
where 6vo is determined at this peak. In other words, we assume
the velocity is insignificantly affected by the field in the tail
region. The rate at which a point z is catching up with the front

of the steep edge is given by

-Az/voT

.. . ) _ _ 0
Az = zZ,- 2z = 5vo ov 6vo (1 e ) (50)
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which has the solution

-6v_ At/v T +Az /v T
o o o’ o 1)} ) (51)

Az = v.T in -{1 + e (e

where Az _ = z_ - z at At = 0. For values of AZO/VOT << 1, the
decay is always exponential; for Azo/voT >> 1, Az decreases
linearly with At for Az >> 6vo At. More important, however:
for all positive AZO/VdT’ z decays exponentially for large At's
with a time constant voT/évo. If tg >> T, the ratio vo/évO is

roughly the ratio of duration of the pulse time tz to the time

tg for a shock to develop, so that the time constant is approxi-

mately tsT/tz. Thus, in the regime where t, > t, > 7 the pulse

)
sharpens exponentially with a time constant which is intermediate
in value between tg and 7. If the initial width of the pulse or
length of the modulation cycle is less than VT (i.e. 7 >> tz)
then the nonlinearity responds very little to the pulse during the
intensity build up and steepening occurs with a time constant
V6T2/3V29Maxt£ or approximately tst/tj. Neglecting dispersion,
we see that exponential decay of the nonlinear index indicates an
infinite time for infinite steepening.

We can include the combined effects of relaxation and dis-
persion in an estimation of the thickness of the steep region by
noting that relaxation reduces the nonlinear velocity change
through a shock front of thickness d by a factor (1 - exp {-d/voT}).
In the limit in which the distance dO given by (23) is much larger

than the relaxation length (i.e. d0 >> VOT), the thickness reduces

to (39) and the frequency spread is given by (40). However, when
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do <L v T the thickness is 4 =4VVOT30. Relaxation can thus

markedly increase the thickness. The frequency spread is also
modified so that Avg4 =‘nggf7F. For CS,, 7 = 3 X 10713 sec ana
since from the previous secgion do ~ lO"5 cm, we have VT >> do.
The modified thickness is approximately 3u and the frequency
spread is 3000 cm_l. This is the maximum frequency spread which
can occur due to steepening. The degree of steepening and hence
spreading depends strongly on experimental conditions.

The steepening of specific pulse profiles has been investi-

gated by solving (43) and (7a) numerically using a modified Runge-

Kutta technique. Results are shown in Figs. 3 through 6 for index

changes expected to occur in small scale trapping <v3p°,: .1>.

The evolution of a short pulse in a trapped beamocan be
approximated by the behavior of an intense pulse penetrating the
nonlinear trapped region from a linear region. This is shown in
Figs. 3 and 4 for two different ratios of the relaxation time to
the shock time. 1In Fig. 3 this ratio is about .01l6 and in 2 shock
times an amount of steepening occurs which is approximately equal
to the steepening which occurs in 8 shock times for Fig. 4 where
the ratio is about .25,

The shape taken by a periodically modulated optical pulse
depends upon the ratio of the relaxation time of the dielectric
to the modulation period. 1In Fig. 6 this ratio is relatively
large, in which case the dielectric relaxation from one period
of modulation can cause a continued dielectric constant fall off

into the region occupied by the leading edge of the next cycle.

This causes steepening on both the front and back edges of the
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modulation cycle. If, on the other hand, the above ratio is
small, as is the case in Fig. 5, only the lagging edge of the
periods steepen appreciably. In Figs. 5 and 6 the boundary
conditions for the pulse were taken to be that of an initial
sinusoidal spatial distribution at t = 0. With this condition
the distortion of a single cycle after moving a distance z is
nearly the same as that which occurs when the cycle moves a
distance z from an input boundary if the steepening distance is
much longer than the length of a modulation cycle.

As is seen from the results in Figs. 5 and 6, as well as
equations (7a) and (43) and the discussion above, the distortion
for a given z is strongly affected by the ratio of the relaxation
time to the modulation frequency. The phase and frequency spec-
trum will also be affected; the spectrum spreads less as the
relaxation time increases in agreement with the results of
Lallemand.2
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APPENDIX A
We examine in this appendix two of the overall features
of the pulse described by (15), specifically the behavior of

the center of energy and its spatial dispersion. For t < tg

and for a pulse whose energy density tends to zero as
-€

| z] for |z| — », where ¢ > 1, we shall show the following:
o0 o0
a) the center of energy z = [ 2zpdz/[ pdz travels at uniform
-0 -0
speed.

b) The spatial dispersion of a symmetric pulse or= (z - E)z
increases quadratically with time.
Consider first the following lemma: the integral
o0

In = f pn dz (A-1)

-00

is constant in time if n > 1. To see this we differentiate

(A-1) with respect to time

oI 0
0 _n [ pn_l cp dz (A-2)
ot -0 ot

and using (13)we have

oI ©

n n Jd
—— = 3v.n 2L az . (A-3)
Bt v2 '-/;oo P Bz

If time is held constant then we may rewrite this as
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oI p (z=+)
2
ot p (z=-)
_ n n+1l p (z=+)
= VomI
p (2z=-x)
= 0 . (A-4)

Now consider the motion of the center of energy

— 3v
dz 1 .2 dp 2 o
gz _ - =L gz = —2 oL q
3t = I {w z 5¢ dz I, [ zp Sz 42
3v - @ 3v 00
2 Ll 2] _ 2V 2
= m— = 2 p —_——— f o dz . (A‘5)
Il 2 Jow 2Il -0

The first term is zero from the assumption above concerning
the dependence of p for large |z| while the second term is

constant from the lemma. Therefore,

dz 2 72
Y2 . £ _ ¢ (a-5a)
2
dt 21,
and
3v, I
Z= - lt+z, , (A-6)
1

the center of energy moves backwards in the moving frame

linearly in time.
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Next consider the function

22 = {L-f 22 o dz (A-7)
1

differentiating with respect to time we obtain

2 3v 00
g%- = %I f 22 %% dz = - TIE [ = p2 dz (A-8)

and differentiating once more we have

— 2 2
272 6v 0 6v
d 2 3 2
g = —— /[ p dz=—5—1I; . (A-9)
dt 1 - 1

2
3v —
22 2 1. 2 + At + 2° (A-10)
Il 3 o
where
3v 00
As -2, 2 (a-11)
l - t=0

Therefore the dispersion is given by

2 2
3v., I, t 3v. I
2 2 °3 2 2\ 2
g = (z - z2)° = +At+z-< t
I 21,
- 2
+ 3z v, I2t/Il -z (A-12)

If we take the pulse symmetrical at t = O and further that

Eo = 0 then we have
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9 2
2
o (t) -2 (4 I,I, - 1.2 2 + 02(0) . (A-12a)
2\3 173 2
41,
One can show using the Cauchy-Schwartz-Boniakowsky relation

2
that 1113 - 12 > 0, therefore

oz(t) > 02(0) s (A-13)

7

and the dispersion increases quadratically with time.
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APPENDIX B

We examine here the development of an N-wave [the asymp-
totic solution to (15)]. We will assume at z = 0 an N-wave

of the form

v_t
o

p = > 0Lttty (B-1)
3v, (t+t]) SN

= 0 , elsewhere

and
=0 , (B-2)
where tl = z/vo. Here J is the initial pulse length in the
medium at tl, to = E/évo - tl, and 6vo = 3v2pMax(tl).
The solution for p. is
o= Vot ~c 0<vt-2zc<¢ z (t) (B-3)
3v, (t+t ) ’ ~ ° ~ °

= 0 , elsewhere

where

1/2

z (t) = [4ovg (t+t )] (B-4)
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From (16) and the boundary condition, the solution for the

phase is
Lo z
¢ = = (z—vot) 1n {l - ———————%} , O S vot -z < zo(t)
~N
3v, vo(t+to)
(B-5)
= 0 elsewhere.
The frequency shift at the peak PMax is
o .
sw(z) = - %%-= §9 [1n {1 --—_——5———f}
. Vo(thto)
z z (t.)
+ o ¥ } (B-6)
v (B tty) (votg + 2,5 (ty) ]
where tM is the solution to
vk -z = zo(t) . (B-7)
For voto >> z
w2 V,P
b (2) ~ - 2 2 Max (B-8)
voﬂ

which is in agreement with the result of reference 7.

17 May 1967
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

la.

1b.

2a,

2b.

2c.

24.

2e.,

Development in distance of a Gaussian input pulse
in time, z = 0, zy = zs/2, zZ, = z. (The time
axes for each curve are translated by - Zi/vo)'
Development in time of a Gaussian initial pulse in

space. t_ = 0, t

o = ts/2, t, = tg. (The pulse is

1
shown in the frame moving with velocity v ).
Development in distance of intensity of a sinusoidal

input in time of the form p = p sin? mt/T, where T

is the modulation period. z_= O, z, = zs/2, z, = 2

o s’

(The time axis for each curve is translated by - zi/vo).
Here vzpo/vO = .1.

Development in time of a sinusoidal initial pulse in
space t_ = 0, t) = ts/2, t, = t. (The pulse is shown
in the frame moving with velocity vo).

Development in distance of the phase for a sinusoidal
input field.z1 = zs/2, z, =z . At z-= 0, ¢ = 0.

(The time axis for each curve is translated by - Zi/vo)'
Wy is the optical frequency, T is the modulation period.
Spectrum of the sinuscidal pulse at 2, and z, for

on = 100. The frequency is in units of half the initial
modulation frequency, the even multiples being absent.
At z_ the most intense peak is about 2000 wave numbers
below w, for the case of a ruby laser.

Spectrum of the sinusoidal pulse at 24 and z,

for on = 500. The frequency is in units of half the

initial modulation frequency, the even multiples being
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absent. At zgs the most intense peak is about 2000

wave numbers below Wy for the case of a ruby laser.
Fig. 3a. Propagation of a pulse in the stationary frame. The

initial pulse just before entering the medium is

Gaussian with the height and width normalized to

VP t v
. 270 _ s O _ _
unity. Ve = .2, 7 = .291). T = .0017 ts’

1= .89 ts, t2 = 2.61 ts, t3 = 6.97 ts'

Fig. 3b. The integrated energy density U= [ p dz as a function

of time (normalized to the shock time).

t

[ee]

Fig. 4a. Propagation of a pulse in the stationary frame. The
input pulse just before entering the medium is Gaussian

with the height and width normalized to unity.
VP
2o

t v
b .2, (-7—_ 291). T= .220t . t; = .89 t_,
ty,= 177 t_, ty= 5.22 t_, t, = 8.72 t_, to = 12.29 t_.

Fig. 4b. The integrated energy density as a function of time

(normalized to the shock time).



Fig. b5a.
Fig. 5b.
Fig. 6a.
Fig. 6b.
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Propagation of a pulse in the stationary frame. The

v
v t v (o]
s ©

2P0 _
72 - 1 < 2 = .531). T = .0094 t_, t

1= 0

t,=1.66 t_, t
S

5 3.13 tg-

3=
The integrated energy density as a function of time

(normalized to the shock time).

Propagation of a pulse in the stationary frame. Th

ma

initial pulse is sinusoidal of the form Po sin2 (———

o)

Distance is normalized to modulation wavelengths.

V2Po tsvo
2 - .075 < 2 = .707). T= .354t_, t; =0,
£, = 1.74 t_, tg = 4.56 t_.

The integrated energy density as a function of time

(normalized to the shock time).

T

e

T

initial pulse is sinusoidal of the form Fo sin? (EE—>.
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